Landslide Displacement Prediction Model Using Time Series Analysis Method and Modified LSTM Model

نویسندگان

چکیده

Landslides are serious and complex geological natural disasters that threaten the safety of people’s health wealth worldwide. To face this challenge, a landslide displacement prediction model based on time series analysis modified long short-term memory (LSTM) is proposed in paper. Considering data from different periods have values, weighted moving average (WMA) method adopted to decompose cumulative into trend periodic displacement. predict trend, we combined landslides early stage with an LSTM model. repeatability periodicity rainfall reservoir water level every cycle, fully connected (LSTM-FC) was constructed by adding layer traditional The two predicted displacements were added obtain final In paper, under same conditions, used polynomial function algorithm compare LSTM-FC eight other commonly algorithms. Two results indicate able effectively

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Displacement prediction of Liangshuijing landslide based on time series additive model

The evolution of landslide displacement is affected by many factors. This paper studied the displacement monitoring data of Liangshuijing Landslide with Factor Analysis Method and found that the dominant factors influencing landslide displacement were in decreasing sequence: cumulative rainfall of anterior two months> rainfall of current month> the average reservoir level of current month>reser...

متن کامل

River Flood Prediction using Time Series Model

With the passage of time the impacts of natural hazards continue to increase around the world. The globalization and growth of human societies and their escalating complexity and river flooding will further increase the risks of natural hazards. Flood prediction and control are one of the greatest challenges facing the world today, which have become more frequent and severe due to the effects o...

متن کامل

Residual analysis using Fourier series transform in Fuzzy time series model

In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...

متن کامل

Tidal prediction using time series analysis of Buoy observations

Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...

متن کامل

The Application of Wavelet Analysis and Support Vector Machine Coupling Model in Displacement Prediction of Landslide

Considering features, such as obvious nonlinear and chaotic characteristics, of the time series of landslide displacement, this paper proposed a wavelet analysis and support vector machine coupling model (WA-SVM) to predict the displacement of a landslide. The monitored time series of displacement firstly is decomposed into several components, including high frequency components and low frequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11101519